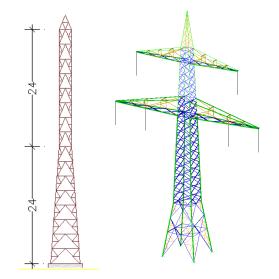


ANGELHY project

Innovative solutions for design and strengthening of telecommunications and transmission lattice towers using large angles from high strength steel and hybrid techniques of angles with FRP strips

Prof. Ioannis Vayas NTUA


Webinar/Workshop - ANGELHY 08/12/2020

Overview of Works

WP 1 Market analysis – case studies – Code review

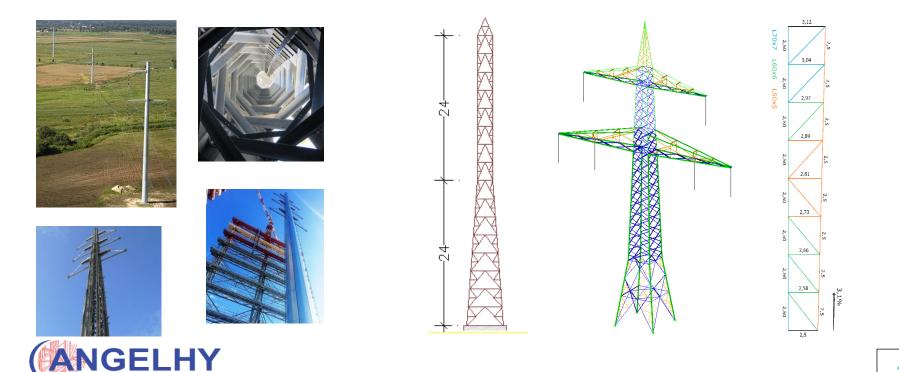
WP 2 Steel and hybrid members from angle sections from HSS

- WP 3 Closely spaced built-up members
- WP 4 Validation and design guide
- WP 5 Validation and Dissemination
- WP 6 Management

Partners and Time Schedule

- 1. Partners
- National Technical University of Athens (NTUA, coordinator)
- ArcelorMittal Belval & Differdange SA (AMBD)
- Universite De Liege (ULG)
- Cosmote Kinites Tilepikoinonies AE (COSMOTE)
- Centre Technique Industriel de la Construction Metallique (CTICM)
- Sika France SAS (SIKA)

- 2. Time schedule
- □ Start date 01/07/2017
- End date 31/12/2020
- Duration 42 months



WP 1 Market analysis – Case studies – Code review

- Task 1.1 Market analysis and identification of structural typologies for telecommunication towers and transmission towers
- Task 1.2 Design of six case studies
- Task 1.3 Critical assessment of EN rules for lattice towers and design assisted by testing

Task 1.1 Market analysis – transmission towers

Installation of new lines:

- Extension of existing 110-kV/220-kV lines
- Installation of new 380-kV lines
- Installation of new high-voltage direct current lines (HVDC)

HVDC lines: Less losses, more economical for long distances (> 750 km), more slender (2 conductors per circuit, taller (higher voltage 400-600 kV).

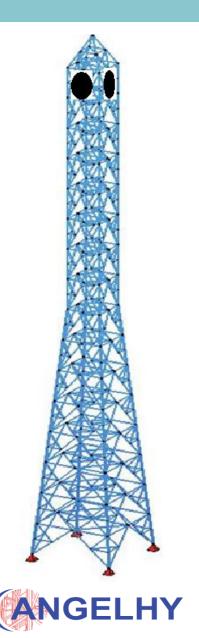
Demand for larger angle profiles (> L 150) and HSS

Transmission tower for a HVDC line

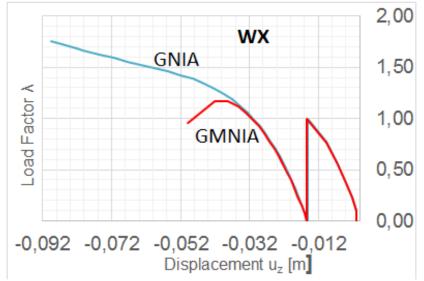
Reinforcement of existing lines:

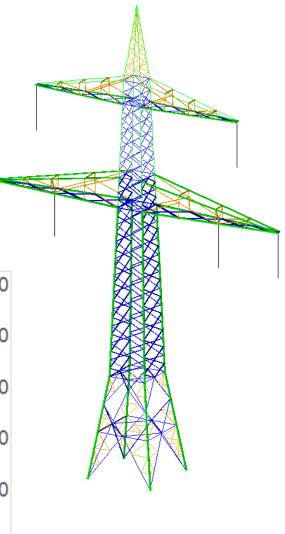
- Upgrading existing lines from 110-kV/220-kV to 380-kV
- Combining direct current lines with alternative current lines (e.g. ultranet)
- · Increasing the section of the conductors
- Use of high-temperature conductors (HTLS)

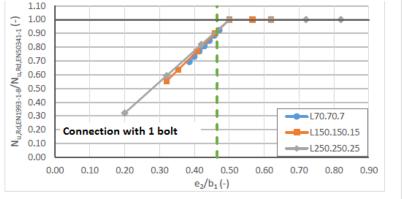
Upgrading existing lines: conductors with bigger diameters, more bundles (4 against 1 or 2), longer insulators (5 against 1 or 2 m), longer protection strip


Additional segments, higher loads, larger angles, HSS

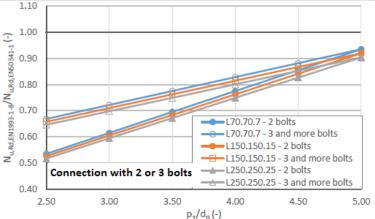
Upgrade of a 220-kV line to a 380-kV line

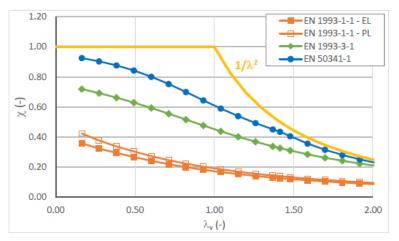


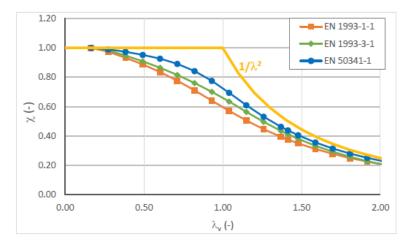

Task 1.2 Design of 6 case studies



- Located in Saxony, Germar
- 380 kV transmission line
- 350 m wind span
- 525 m weight span



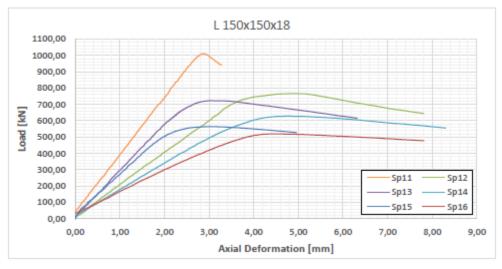

Task 1.3 Comparison between EN 1993 and EN 50341-1

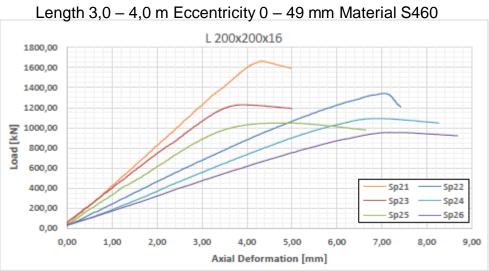

Tension resistance of angles

Buckling resistance of angles

diagonal member L70.7: connection with one bolt

leg member L70.7


WP 2 Steel and hybrid members from angle section


- Task 2.1 Compression tests on large angle columns from HSS
- Task 2.2 Numerical investigations and design rules for single angle members
- Task 2.3 Bending and buckling tests on hybrid angle members strengthened with FRPs
- Task 2.4 Numerical investigations and design rules for hybrid angle members with FRPs
- Task 2.5 Full scale tests on cell network lattice towers
- Task 2.6 Numerical models for lattice towers

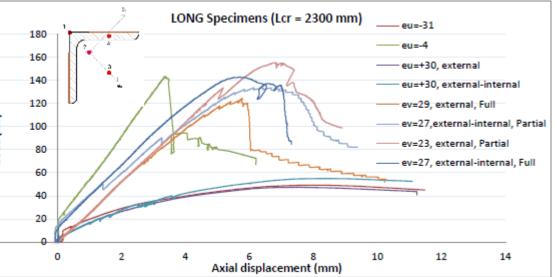
Task 2.1 Tests on large angle HSS columns

Length 2,5 - 3,5 m Eccentricity 0 - 49 mm Material S460

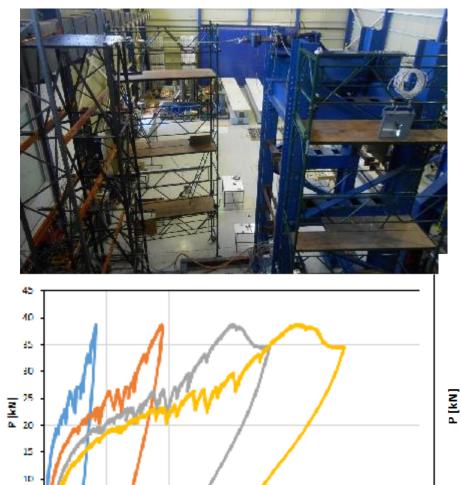
(c)

Task 2.2 Design rules for single angle members

- Cross section classification
- Cross section design
- Member design
- Experimental validation


Task 2.3 Tests on hybrid members

- 5 thee-point bending tests
- 16 Buckling tests
- Cross section L70x70x7


Task 2.4 Design rules for hybrid angle members

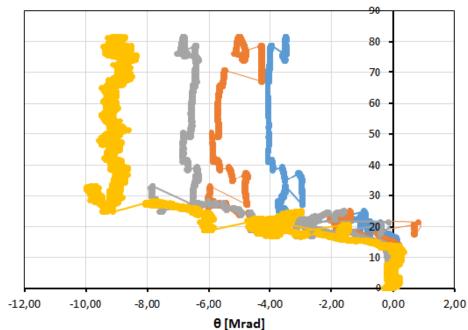
- Mechanical properties of hybrid sections
- Safety factors
- Cross section design
- Member design
- Experimental validation

Task 2.5 Full scale tests on complete towers

Orthogonal loading

ы

5 [mm]


80

100

120

Diagonal loading

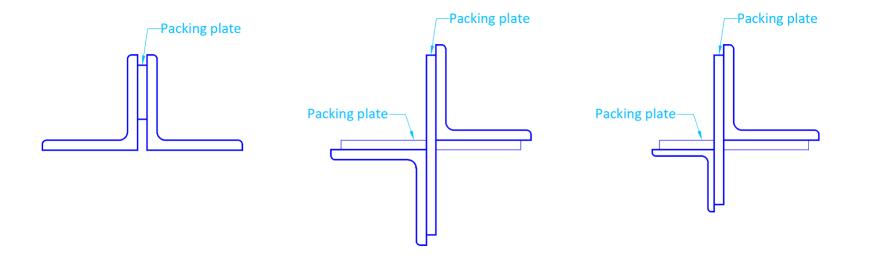
20

-00

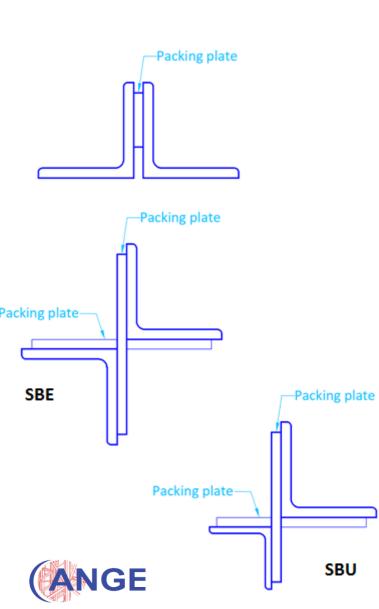
5

0 <mark>-</mark> 1

Task 2.6


Guidance on analysis models for complete towers

- 1 Introduction
- 2 Code provisions for design of lattice tower members
- 3. Experimental validation of Code provisions
- 4. Alternative analysis and design models for steel lattice towers
- 5. Proposed analysis and design models for steel lattice towers, strengthened by FRP plates
- 6. Validation of the proposed models to the tested towers

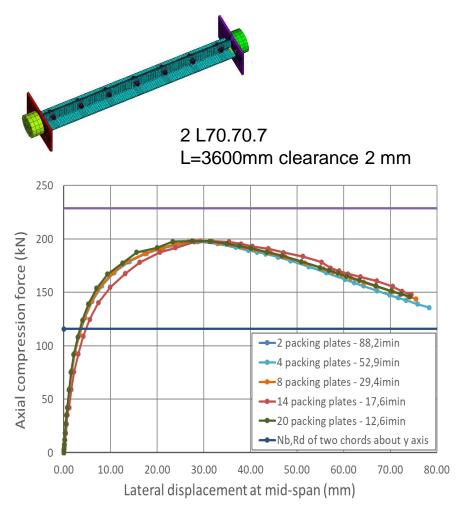

WP 3 Closely spaced built-up members

- Task 3.1 Technical specifications for laboratory tests
- Task 3.2 Laboratory tests
- Task 3.3 Parametric studies
- Task 3.4 Development of design rules

Task 3.1 Test specifications

BBE1 $2 L 70 x 70 x 7$ 1200 7 BBE2 $2 L 70 x 70 x 7$ 3600 19 BBE3 $2 L 70 x 70 x 7$ 2000 4 BBE4 $2 L 70 x 70 x 7$ 2000 4 BBE5 $2 L 70 x 70 x 7$ 3600 6 BBE5 $2 L 70 x 70 x 7$ 3600 6 BBE6 $2 L 70 x 70 x 7$ 3600 6 BBE6 $2 L 70 x 70 x 7$ 3600 6 SBE1 $2 L 60 x 60 x 6$ 2200 $2 x 4$ SBE2 $2 L 60 x 60 x 6$ 3000 $2 x 5$ SBE3 $2 L 60 x 60 x 6$ 3000 $2 x 5$ SBE4 $2 L 60 x 60 x 6$ 3000 $2 x 5$ SBE5 $2 L 60 x 60 x 6$ 4000 $2 x 5$ SBU1 $L 80 x 80 x 8$ 2200 $2 x 4$ SBU2 $L 80 x 80 x 8$ 3000 $2 x 5$ SBU3 $L 80 x 80 x 8$ 3000 $2 x 4$	Notation	Cross-section	Member length L (mm) [*]	Total number of packing plates ¹²
BBE3 $2 L.70 \times 70 \times 7$ 2000 4 BBE4 $2 L.70 \times 70 \times 7$ 3600 6 BBE5 $2 L.70 \times 70 \times 7$ 3600 19 BBE6 $2 L.70 \times 70 \times 7$ 3600 6 SBE4 $2 L.70 \times 70 \times 7$ 3600 6 SBE2 $2 L.60 \times 60 \times 6$ 2200 2×4 SBE2 $2 L.60 \times 60 \times 6$ 3000 2×5 SBE3 $2 L.60 \times 60 \times 6$ 3000 2×5 SBE4 $2 L.60 \times 60 \times 6$ 3000 2×5 SBE5 $2 L.60 \times 60 \times 6$ 3000 2×5 SBE6 $2 L.60 \times 60 \times 6$ 4000 2×5 SBE6 $2 L.60 \times 60 \times 6$ 4000 2×5 SBU1 $L.80 \times 80 \times 8$ 2200 2×4 SBU2 $L.80 \times 80 \times 8$ 3000 2×5 SBU3 $L.80 \times 80 \times 8$ 3000 2×4	BBE1	2 L 70 x 70 x 7	1200	7
BBE4 $2 1.70 \times 70 \times 7$ 3600 6 BBE5 $2 L 70 \times 70 \times 7$ 3600 19 BBE6 $2 L 70 \times 70 \times 7$ 3600 6 SBE1 $2 1.60 \times 60 \times 6$ 2200 2×4 SBE2 $2 L 60 \times 60 \times 6$ 3000 2×5 SBE3 $2 L 60 \times 60 \times 6$ 3000 2×5 SBE3 $2 L 60 \times 60 \times 6$ 3000 2×5 SBE4 $2 L 60 \times 60 \times 6$ 4000 2×5 SBE5 $2 L 60 \times 60 \times 6$ 4000 2×5 SBE6 $2 L 60 \times 60 \times 6$ 4000 2×5 SBU1 $L 80 \times 80 \times 8$ $+ L 60 \times 60 \times 6$ 2200 2×4 SBU2 $L 80 \times 80 \times 8$ $+ L 60 \times 60 \times 6$ 3000 2×5 SBU3 $L 80 \times 80 \times 8$ $+ 1.60 \times 60 \times 6$ 3000 2×4	BBE2	2 L 70 x 70 x 7	3600	19
BBE5 $2 L 70 x 70 x 7$ 3600 19 BBE6 $2 L 70 x 70 x 7$ 3600 6 SBE1 $2 L 60 x 60 x 6$ 2200 $2 x 4$ SBE2 $2 L 60 x 60 x 6$ 3000 $2 x 5$ SBE3 $2 L 60 x 60 x 6$ 3000 $2 x 5$ SBE3 $2 L 60 x 60 x 6$ 3000 $2 x 5$ SBE4 $2 L 60 x 60 x 6$ 3000 $2 x 5$ SBE5 $2 L 60 x 60 x 6$ 3000 $2 x 5$ SBE6 $2 L 60 x 60 x 6$ 4000 $2 x 5$ SBU1 $L 80 x 80 x 8$ $+ L 60 x 60 x 6$ 2200 $2 x 4$ SBU2 $L 80 x 80 x 8$ $+ L 60 x 60 x 6$ 3000 $2 x 5$ SBU3 $L 80 x 80 x 8$ $+ 1.60 x 60 x 6$ 3000 $2 x 4$	BBE3	$2 L 70 \times 70 \times 7$	2000	4
BBE6 $2 L 70 x 70 x 7$ 3600 6 SBE1 $2 L 60 x 60 x 6$ 2200 $2 x 4$ SBE2 $2 L 60 x 60 x 6$ 3000 $2 x 5$ SBE3 $2 L 60 x 60 x 6$ 3000 $2 x 4$ SBE3 $2 L 60 x 60 x 6$ 3000 $2 x 4$ SBE4 $2 L 60 x 60 x 6$ 4000 $2 x 5$ SBE5 $2 L 60 x 60 x 6$ 3000 $2 x 5$ SBE6 $2 L 60 x 60 x 6$ 4000 $2 x 5$ SBE6 $2 L 60 x 60 x 6$ 4000 $2 x 5$ SBU1 $L 80 x 80 x 8$ 2200 $2 x 4$ SBU2 $L 80 x 80 x 8$ 2200 $2 x 5$ SBU3 $L 80 x 80 x 8$ 3000 $2 x 5$	BBE4	2 L 70 x 70 x 7	3600	6
SBE1 $21.60 \times 60 \times 6$ 2200 2×4 SBE2 $2L60 \times 60 \times 6$ 3000 2×5 SBE3 $2L60 \times 60 \times 6$ 3000 2×4 SBE4 $2L60 \times 60 \times 6$ 3000 2×4 SBE4 $2L60 \times 60 \times 6$ 4000 2×5 SBE5 $2L60 \times 60 \times 6$ 3000 2×5 SBE6 $2L60 \times 60 \times 6$ 4000 2×5 SBE6 $2L60 \times 60 \times 6$ 4000 2×5 SBU1 $L80 \times 80 \times 8$ 2200 2×4 SBU2 $L80 \times 80 \times 8$ 3000 2×5 SBU3 $L80 \times 80 \times 8$ 3000 2×4	BBE5	2 L 70 x 70 x 7	3600	19
SBE2 2 L 60 x 60 x 6 3000 2 x 5 SBE3 2 L 60 x 60 x 6 3000 2 x 4 SDE4 2 L 60 x 60 x 6 4000 2 x 5 SBE5 2 L 60 x 60 x 6 3000 2 x 5 SBE6 2 L 60 x 60 x 6 4000 2 x 5 SBE6 2 L 60 x 60 x 6 4000 2 x 5 SBU1 L 80 x 80 x 8 2200 2 x 4 SBU2 L 80 x 80 x 8 2200 2 x 5 SBU3 L 80 x 80 x 8 3000 2 x 5	BBE6	2 L 70 x 70 x 7	3600	6
SBE3 $2 L 60 x 60 x 6$ 3000 $2 x 4$ SDE4 $2 L 60 x 60 x 6$ 4000 $2 x 5$ SBE5 $2 L 60 x 60 x 6$ 3000 $2 x 5$ SBE6 $2 L 60 x 60 x 6$ 4000 $2 x 5$ SBE6 $2 L 60 x 60 x 6$ 4000 $2 x 5$ SBU1 $L 80 x 80 x 8$ 2200 $2 x 4$ SBU2 $L 80 x 80 x 8$ 3000 $2 x 5$ SBU3 $L 80 x 80 x 8$ 3000 $2 x 4$	SBEI	21.60 x 60 x 6	22.00	2 x 4
SBE4 2 L 60 x 60 x 6 4000 2 x 5 SBE5 2 L 60 x 60 x 6 3000 2 x 5 SBE6 2 L 60 x 60 x 6 4000 2 x 5 SBU1 L 80 x 80 x 8 2200 2 x 4 SBU2 L 80 x 80 x 8 3000 2 x 5 SBU3 L 80 x 80 x 8 3000 2 x 5	SBE2	2 L 60 x 60 x 6	3000	2 x 5
SBE5 $2 L 60 x 60 x 6$ 3000 $2 x 5$ SBE6 $2 L 60 x 60 x 6$ 4000 $2 x 5$ SBU1 $L 80 x 80 x 8$ 2200 $2 x 4$ SBU2 $L 80 x 80 x 8$ 2200 $2 x 5$ SBU2 $L 80 x 80 x 8$ 3000 $2 x 5$ SBU3 $L 80 x 80 x 8$ 3000 $2 x 5$	SBE3	2 L 60 x 60 x 6	3000	2 x 4
SBE6 2 L 60 x 60 x 6 4000 2 x 5 SBU1 L 80 x 80 x 8 2200 2 x 4 SBU2 L 80 x 80 x 8 3000 2 x 5 SBU3 L 80 x 80 x 8 3000 2 x 5	SBE4	2 L 60 x 60 x 6	4000	2 x 5
SBU1 L 80 x 80 x 8 + L 60 x 60 x 6 2200 2 x 4 SBU2 L 80 x 80 x 8 + L 60 x 60 x 6 3000 2 x 5 SBU3 L 80 x 80 x 8 + L 60 x 60 x 6 3000 2 x 4	SBE5	2 L 60 x 60 x 6	3000	2 x 5
SBU1 + L 60 x 60 x 6 2200 2 x 4 SBU2 L 80 x 80 x 8 3000 2 x 5 SBU3 L 80 x 80 x 8 3000 2 x 4	SBE6	2 L 60 x 60 x 6	4000	2 x 5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	SBU1		2200	2 x 4
SBU3 +1.60 x 60 x 6 3000 2 x 4	SBU2		3000	2 x 5
T 90 - 90 - 9	SBU3		3000	2 x 4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	SBU4	L 80 x 80 x 8 + 1.60 x 60 x 6	4000	2 x 5

16


Task 3.2 Laboratory tests – revised test matrix

B2. Specimen BBE2

	ID of specim	en: BBE2
Date of testing	27/02/2020	
Type of specimen	Back to back connected angles	Real
Mean actual o	limensions	
Cross-section	2 L70x70x7	
ha ₂ [mm]	69,93	
ea1 [mm]	6,86	
hb ₂ [mm]	70	
eb ₁ [mm]	6,83	
a1 / a2 [mm]	86,3 / 75,3	
b1 / b2 [mm]	77,2 / 66,2	
a3 / a4 [mm]	86,4 / 75,4	
b3 / b4 [mm]	77,3 / 66,3	
L [mm]	3600	
Lcrit, major-axis [mm]	3660	
Lcrit, minor-axis [mm]	1830	
Tightening torque [Nm]	253	
Total number of packing plates	19	
Total number of bolts for packing plate connection	19 M16 10.9	
Level of bolt pretension [%]	100	
Material	S 355	
Actual fy [Mpa]	414,6	
Actual fu [Mpa]	544,4	
Respo	nse	
Ultimate resistance [kN]	485,36	- Contraction of the second
Comments	Bifurcation around weak axis and no flexural buckling around strong axis as expected !	

Task 3.3 Parametric studies

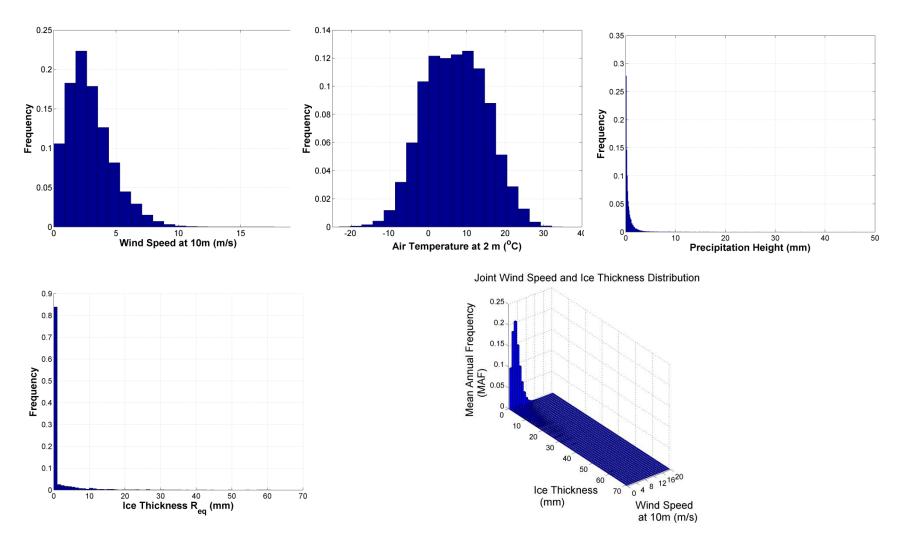
Parameters considered

- Connection type: bolted welded
- Clearance: 0,2 0,5 1.0 mm
- Level of preloading: 0,2 0,6 full
- Friction: $\mu = 0,05 0,30 0,50$

Conclusions

Even a very small clearance (0,2mm) highly degrades the resistance For a clearance higher than 0,5mm, a lower bound resistance is attained Even small bolt preloading increases the resistance Low level of preloading may be sufficient to attain the "full connection"

Task 3.4 Design rules


TOPIC	EXISTING RULES	ANGELHY PROPOSALS	CODE AMENDMENT						
	Buckling resistance of back to back connected angle section members								
Major axis buckling	$\frac{\text{prEN1993-1-1 (2019):}}{\text{If } a \leq 15i_v:}$ Member may be treated as integral without considering the influence of the connections. $\frac{\text{If } a > 15i_v:}{\text{The influence of connections}}$ The influence of connections and the resulting shear stiffness should be accounted for. No design proposal is provided. $\frac{\text{EN 50341-1 (2015)}}{\text{Independently from the packing}}$ Independently from the packing plate distance, the buckling resistance is based the effective geometric slenderness λ_{zi} :	$\frac{Buckling resistance:}{\lambda_{Ed}}$ $\frac{N_{Ed}}{\chi \frac{Af_y}{\gamma_{M1}}} \le 1,0$ $\bar{\lambda}_{Sv} = \sqrt{\frac{Af_y}{N_{cr,SV}}}$ $N_{cr,SV} = \frac{1}{\frac{1}{N_{cr}} + \frac{1}{S_v}}$	prEN1993-1-1 (201 §8.4.5 Closely space built up members						

- Task 4.1 Probabilistic modelling of structure and loads
- Task 4.2 Performance-based assessment of single towers and ensembles of towers
- Task 4.3 Verification and calibration of rules
- Task 4.4 Design guide containing design recommendations

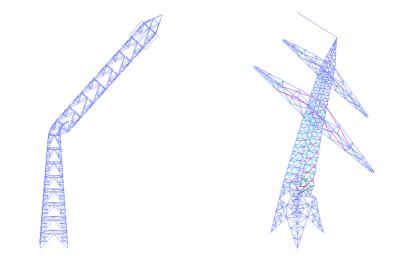
Task 4.1 Probabilistic modeling of structure and loads

Task 4.2 Performance-based assessment

$$Risk = \int Vulnerability \cdot dHazard$$

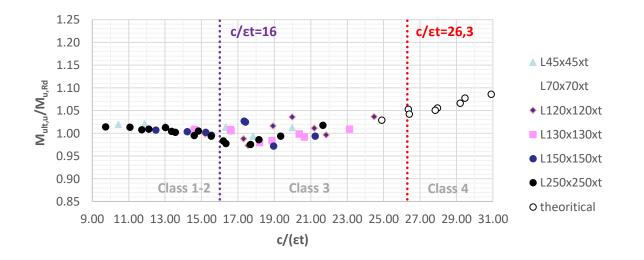
Single tower performance

- Random loads
- Random properties
- Simplified model uncertainty
- Estimate Risk


Transmission line performance

- 2 linear groups meeting at an angle
- Angles in 180 130 degrees
- Cascading failures
- Assume community served by towers, assess indirect costs (no main line – branch line)

Rehabilitation decision-making


Consider options after 50 years of service

- Do nothing?
- Hybrid Strengthening?
- High-strength replacement?
- Cost versus benefit analysis

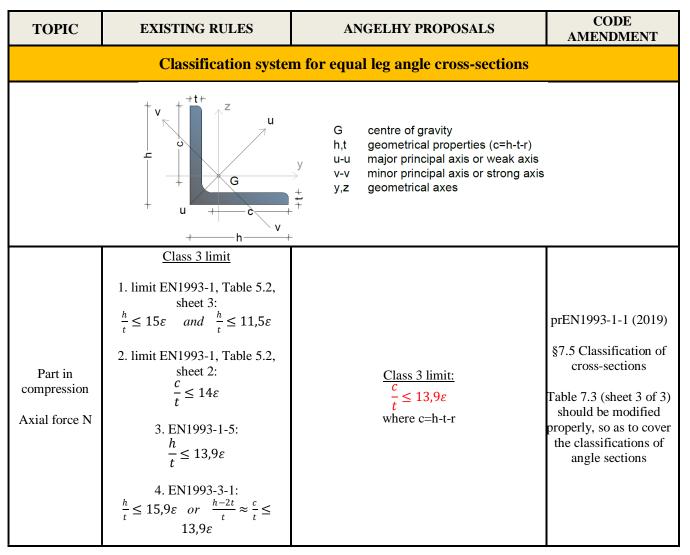
Task 4.3 Verification and calibration of rules

Comparison between numerical and analytical results for the CS-resistance subjected to strong axis bending moment M_u , related with the c/ ϵ t ratio

Task 4.4 Design Guide

1 Scope

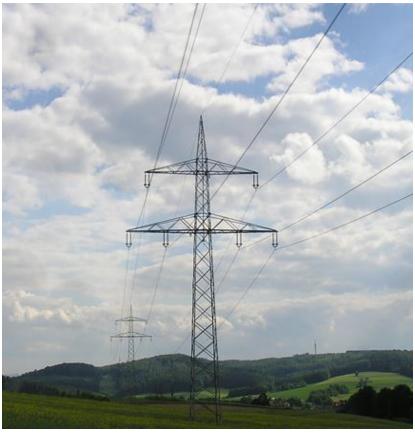
- 2 Notations, symbols and abbreviations
- 3 Angle profiles
- 4 CFRP-material
- 5 Angles with CFRP-strips
- 6 Steel lattice towers
- 7 Design rules for single angle members
- 8 Design rules for hybrid angle members
- 9 Design rules for closely spaced built-up angle members



WP 5 Codification and Dissemination

- Task 5.1 Design rules and principles for single angles and built-up cross sections to be included in the next revision of EN 1993-3-1 and EN 1993-1-1
- Task 5.2 Design and construction recommendations for hybrid members
- Task 5.3 Dissemination and implementation of project results
- 5 accepted presentations in EUROSTEEL 2020
- 2 submitted papers in scientific Journals

Task 5.1 Design recommendations for angles



Task 5.2 Construction recommendations for hybrid angles

1	<u>1</u> <u>General requirements</u> 2					
	<u>1.1</u>	Storage of resins and structural strengthening products	2			
	<u>1.2</u>	Traceability	2			
	<u>1.3</u>	Ambient conditions	3			
<u>2</u>	Eq	uipment	4			
	<u>2.1</u>	Safety recommendations	4			
	<u>2.2</u>	Tools	4			
	<u>2.3</u>	Substrate preparation	5			
<u>3</u>	Sti	ructural strengthening system preparation	6			
	3.1	Preparation of the resin	6			
	<u>3.2</u>	Preparation of the FRP plate	6			
4	Co	nstruction recommendations	7			
	4.1	FRP application	7			
<u>5</u>	<u>Fir</u>	<u>nition</u>	9			
6	<u>6</u> Design recommendations					
L	List of Figures					
L	List of Tables 12					

Task 5.3 Dissemination

ANGELHY

Innovative solutions for design and strengthening of telecommunications and transmission lattice towers using large angles from high strength steel and hybrid techniques of angles with FRP strips

Webinar/Workshop 08 | 12 | 2020

Innovative developments in the field of steel lattice towers News from research and practice

Free of charge registration:

5 accepted presentations in EUROSTEEL 2020

2 submitted papers in scientific Journals

End

Thank you very much

