

Case study design – Transmission tower

Mike Tibolt, ArcelorMittal Global R&D, Luxembourg

8th December 2020 – Innovative Developments and Solutions for Steel Lattice Towers

Objectives

- Identify a typical typology for transmission towers in Europe
- Design of one single tower
- Design according to EN 50341-1:2012
- Comparison to EN 1993-1-1, EN 1993-3-1 and nonlinear design methods
- Case study as basis for further research within the project ANGELHY

Danube tower - Typical tower typology

 Danube tower 2 cross arms 2 circuits One circuit/side -> 3 phases Lower cross arm = longest Upper cross arm = shortest Height ≈ 30 - 50 m Width ≈ 30 m 	 Barrel tower 3 cross arms 2 circuits One circuit/side -> 3 phases Middle cross arm = largest Height ≈ 50 - 60 m Width ≈ 20 m Low environmental intervention 	 Single plan tower One cross arm 2 circuits One circuit/side -> 3 phases Height ≈ 30 - 40 m Width ≈ 40 m Big environmental intervention
 <u>Applications</u> Standard type in Europe 220 kV/380 kV Woods Urban areas Medium protection strips 	Applications • 220 kV/380 kV • Woods • Rivers • Farms • Standard type in UK	 <u>Applications</u> Airports Large protection strip East-Germany for 110 kV

Suspension and Dead-end tower

Design for both types

	 Suspension tower Hanging insulators Self-weight +ice of conductors Self-weight of tower body Transverse wind loads Light structure 	 <u>Applications</u> Support of conductors Reduction of span 		
<image/>	 <u>Dead-end tower</u> Horizontal strain insulators Self-weight +ice of conductors Tension loads in conductors Self-weight of tower body Transverse wind loads Longitudinal wind loads Heavy structure 	 <u>Applications</u> Change of line direction Ends of lines Transition to buried cables Straight lines -> cascade failure 		

Location of case study tower

Case study - Layout of transmission line

Case study - Tower geometry

General information

- Suspension tower and dead-end tower
- Two circuits of 380 kV
- Each circuit of 3 phases/side
- Conductors: 4* 264-AL1/31-ST1A
- Earth wire: 1* 94-AL1/15-ST1A
- Insulators: Quadri*Sil Insulators (HUBBEL)

5 m

Case study - Tower geometry

Case study - Design assumptions

Design by software TOWER (V 15.0) from Power Line Systems

- Loads and design according to norms: EN 50341-2-4:2016 (German NA)
- Only single tower design -> no transmission line design
- No conductor design -> point loads from self-weight an wind on insulators
- Linear-elastic design
- No connection design
- No foundation design
- Only single angles

Case study - Design assumptions

General Design Assumptions

- Linear elastic design and first order theory (EN 50341-1:2012, 7.3.5 b))
- Lattice tower is pin jointed truss structure (EN 50341-1:2012, 7.3.5 a)) -> truss + beam elements
- Foundations as pin supports (Own assumption)
- Eccentricities via effective non-dimensional slenderness λ_{eff} (EN 50341-1:2012, J.4.2.1)
- Only axial tension and compression forces acting in truss elements
- Buckling curve c (EN 50341-2-4:2016, J.4.1 DE.2)
- Wind loads according to Method 1 (wind on sections) of EN 50341-1:2012 (EN 50341-2-4:2016, 4.4.3.1)
- Wind and ice loads on insulators
- No ice loads on tower structure but only on conductors (EN 50341-2-4:2016, 4.5.2 DE.1)
- Ice loads on conductors by German Meteorological Services and long-term experience (Ice load zones)
- For dead-end tower: Calculation of tension forces (sags, temperature, ice loads) with Excel sheet
- Steel grade: S355J2 acc. to EN10025-2:2004

Case study - Numerical model in TOWER

- Model with primary and secondary bracing system
- No modelling of connections -> pinned connections
- No modelling of foundations -> pinned supports
- Truss elements (Blue) + Beam elements (Green)
- No modelling of conductors -> Loads applied as point loads on insulators
- Tower divided into 7 sections + 2 cross arms
- Only single angles
- Self-weight is calculated by TOWER
- Weight of gussets and bolts estimated by adjustment factor (20%)
- Wind loads on tower and insulators acc. EN 50341-2-4:2016 by TOWER
- Wind and ice loads on conductors acc. EN 50341-2-4:2016 by hand
- Ice load on insulators acc. EN 50341-2-4:2016 by hand
- Weight of lines men acc. EN 50341-2-4:2016 by TOWER
- Construction loads acc. EN 50341-2-4:2016 by hand
- Load combinations acc. EN 50341-2-4:2016

Case study – Load cases

- Load cases A to L (12 load cases) to cover:
 - Wind loads in three main directions: x-,y-direction and $\phi = 45^{\circ}$ (A to C)
 - Extreme ice loads combined with wind (D to F)
 - Construction and maintenance loads (I)
 - Exceptional loads (unbalanced ice loads) (J to L)
- Suspension tower -> Load cases A to J

- Weight of lines men applied on members with $\alpha < 30^{\circ}$ to horizontal: Point load of 1kN in the center of member
- The partial safety factors to be applied to the loads depend on the load case and are as follows:
 - $\bullet \qquad \gamma_{G}=\gamma_{W}=\gamma_{I}=\gamma_{P}=\gamma_{C}=1,35$
 - $\gamma_G = \gamma_I = 1,35$
 - $\bullet \qquad \gamma_G = \gamma_W = \gamma_I = \gamma_P = \gamma_C = 1,0$
 - $\gamma_P = 1,5$

for load cases A to I in case of unfavourable action for load cases A to F in case of favourable action for load cases J to L (exceptional load cases) for construction loads in load case I

Case study – Verifications

Design Checks acc. EN 50341-2-4:2016

- Only verification in ULS -> no SLS and FLS
- Section verifications: Tension + compression -> acc. EN 50341-1, Annex J.3
- Member verifications: Flexural and flexural torsional buckling -> acc. EN 50341-1, Annex J.4
- Crossing diagonal check for bracings without secondary bracings
- Verification of bracing inclination -> Inclination to horizontal $\alpha < 45^{\circ}$
- Redundant member verification -> Hypothetical transversal force = 0.02 of axial force in braced members
- Verification for lines men for members inclined to horizontal $\alpha < 30$

Case study – Results

- Automatic optimization by TOWER: Angle size, Angle type
- Criteria: lightest structure with highest utilization degree

Suspension tower:

Group	Angle Type	Angle Size	Steel grade	
Bottom-legs	SAE	AM 150x150x13-/+	S355J2	
Segment 2	SAE	AM 140x140x15	S355J2	
Segment 3	SAE	AM 120x120x16	S355J2	
Segment 4	SAE	AM 80x80x10-	S355J2	
Segment 5	SAE	AM 80x80x6	S355J2	
Segment 6	SAE	AM 75x75x4	S355J2	
Segment 7	SAE	AM 45x45x3	S355J2	
Diagonal 1	SAE	AM 75x75x4	S355J2	
Diagonal 2	SAE	AM 75x75x4	S355J2	
Diagonal 3	SAE	AM 90x90x5	S355J2	
Diagonal 4	SAE	AM 90x90x6	S355J2	
Diagonal 5	SAE	AM 60x60x4	S355J2	
Diagonal 6	SAE	AM 45x45x4	S355J2	
Cross 1-bottom	SAE	AM 150x150x12-/+	S355J2	
Cross 1-top	SAE	AM 120x120x7	S355J2	
Cross 1-base	SAE	AM 130x130x8	S355J2	
Horizontal 1	SAE	AM 80x80x5	S355J2	
Horizontal 2	SAE	AM 90x90x5	S355J2	
Horizontal 3	SAE	AM 100x100x7	S355J2	
Horizontal 4	SAE	AM 76x76x4.8	S355J2	
Horizontal 5	SAE	AM 75x75x6-	S355J2	
Horizontal 6	SAE	AM 65x65x4	S355J2	
Horizontal 1 base	SAE	AM 80x80x5	S355J2	
Horizontal 2 base	SAE	AM 80x80x5	S355J2	
Horizontal 3 base	SAE	AM 76x76x4.8	S355J2	
Horizontal 4 base	SAE	AM 60x60x4	S355J2	
Cross - Horizontal	SAE	AM 45x45x3	S355J2	
Cross 2-bottom	SAE	AM 120x120x7	S355J2	
Cross 2-top	SAE	AM 75x75x5	S355J2	
Cross 2-base	SAE	AM 90x90x5	S355J2	
Redundant 1	SAE	AM 90x90x5	S355J2	
Redundant 2	SAE	AM 60x60x4	S355J2	
Redundant 3	SAE	AM 90x90x5	S355J3	

Total weight: 17 tons

Case study – Results

• Cost reduction by using S460 for leg profiles and horizontal members in cross-arms

Dead-end tower in S355:

Group	Angle Type	Angle Size	Steel grade		Group	Angle Type	Angle Size
Bottom-legs	SAE	AM 150x150x13-/+	S355J2	-	Bottom-legs	DAE	AM 300x300x28
Segment 2	SAE	AM 140x140x15	S355J2		Segment 2	DAE	AM 300x300x28
Segment 3	SAE	AM 120x120x16	S355J2		Segment 3	SAE	AM 250x250x34
Segment 4	SAE	AM 80x80x10-	S355J2	1	Segment 4	SAE	AM 150x150x16-/+
Segment 5	SAE	AM 80x80x6	S355J2	7	Segment 5	SAE	AM 130x130x14
Segment 6	SAE	AM 75x75x4	S355J2	1	Segment 6	SAE	AM 75x75x6-
Segment 7	SAE	AM 45x45x3	S355J2	1	Segment 7	SAE	AM 65x65x4
Diagonal 1	SAE	AM 75x75x4	S355J2		Diagonal 1	SAE	AM 150x150x10-/+
Diagonal 2	SAE	AM 75x75x4	S355J2		Diagonal 2	SAE	AM 140x140x12
Diagonal 3	SAE	AM 90x90x5	S355J2	7	Diagonal 3	SAE	AM 180x180x13+
Diagonal 4	SAE	AM 90x90x6	S355J2		Diagonal 4	SAE	AM 120x120x8
Diagonal 5	SAE	AM 60x60x4	S355J2	7	Diagonal 5	SAE	AM 130x130x8
Diagonal 6	SAE	AM 45x45x4	S355J2		Diagonal 6	SAE	AM 55x55x4
Cross 1-bottom	SAE	AM 150x150x12-/+	S355J2		Cross 1-bottom	SAE	AM 250x250x17
Cross 1-top	SAE	AM 120x120x7	S355J2		Cross 1-top	SAE	AM 120x120x7
Cross 1-base	SAE	AM 130x130x8	S355J2	Total weight	Cross 1-base	SAE	AM 150x150x12-/+
Horizontal 1	SAE	AM 80x80x5	S355J2	Total Wolgin.	Horizontal 1	SAE	AM 90x90x5
Horizontal 2	SAE	AM 90x90x5	S355J2	66 tons	Horizontal 2	SAE	AM 130x130x9
Horizontal 3	SAE	AM 100x100x7	S355J2		Horizontal 3	SAE	AM 140x140x15
Horizontal 4	SAE	AM 76x76x4.8	S355J2		Horizontal 4	SAE	AM 75x75x4
Horizontal 5	SAE	AM 75x75x6-	S355J2		Horizontal 5	SAE	AM 120x120x13
Horizontal 6	SAE	AM 65x65x4	S355J2		Horizontal 6	SAE	AM 55x55x4
Horizontal 1 base	SAE	AM 80x80x5	S355J2		Horizontal 1 base	SAE	AM 76x76x4.8
Horizontal 2 base	SAE	AM 80x80x5	S355J2		Horizontal 2 base	SAE	AM 80x80x5
Horizontal 3 base	SAE	AM 76x76x4.8	S355J2		Horizontal 3 base	SAE	AM 110x110x9
Horizontal 4 base	SAE	AM 60x60x4	S355J2		Horizontal 4 base	SAE	AM 90x90x7-
Cross - Horizontal	SAE	AM 45x45x3	S355J2		Cross - Horizontal	SAE	AM 75x75x7
Cross 2-bottom	SAE	AM 120x120x7	S355J2		Cross 2-bottom	SAE	AM 180x180x13+
Cross 2-top	SAE	AM 75x75x5	\$355J2		Cross 2-top	SAE	AM 90x90x5
Cross 2-base	SAE	AM 90x90x5	\$355J2		Cross 2-base	SAE	AM 130x130x9
Redundant 1	SAE	AM 90x90x5	S355J2		Redundant 1	SAE	AM 90x90x5
Redundant 2	SAE	AM 60x60x4	S355J2		Redundant 2	SAE	AM 100x100x6
Redundant 3	SAE	AM 90x90x5	S355J3		Redundant 3	SAE	AM 90x90x5

Dead-end tower in S460:

Total weight: 56 tons

Steel grade

S460M

S460M

S460M

S460M

S460M

S460M

S460M

S355J2

S355J2

S355J2

S355J2

S355J2

S355J2 S460M

S460M S355J2

S460M

S460M

S460M S355J2

S355J2 S355J2